Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pharmaceutics ; 15(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38004509

RESUMEN

Most electrospun scaffolds for bone tissue engineering typically use hydroxyapatite (HA) or beta tricalcium phosphate (ß-TCP). However, the biological activity of these crystalline compounds can be limited due to their low solubility. Therefore, amorphous calcium phosphate (ACP) may be an alternative in bone repair scaffolds. This study analyzes the morphology, porosity, mechanical strength, and surface chemistry of electrospun scaffolds composed of polylactic acid and collagen integrated with hydroxyapatite (MHAP) or amorphous calcium phosphate (MACP). In addition, the in vitro biocompatibility, osteogenic differentiation, and growth factor production associated with bone repair using human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) are evaluated. The results show that the electrospun MHAP and MACP scaffolds exhibit a fibrous morphology with interconnected pores. Both scaffolds exhibit favorable biocompatibility and stimulate the proliferation and osteogenesis of hWJ-MSCs. However, cell adhesion and osteocalcin production are greater in the MACP scaffold compared to the MHAP scaffold. In addition, the MACP scaffold shows significant production of bone-repair-related growth factors such as transforming growth factor-beta 1 (TGF-ß1), providing a solid basis for its use in bone tissue engineering.

2.
Polymers (Basel) ; 15(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959929

RESUMEN

In recent decades, there has been an increasing focus on the alarming decline in global bee populations, given their critical ecological contributions to natural pollination and biodiversity. This decline, marked by a substantial reduction in bee colonies in forested areas, has serious implications for sustainable beekeeping practices and poses a broader risk to ecological well-being. Addressing these pressing issues requires innovative solutions, one of which involves the development and fabrication of beehives crafted from composite materials that are ecologically compatible with bee biology. Importantly, these materials should also exhibit a high resistance to environmental factors, such as ultraviolet (UV) radiation, in order to maintain their mechanical integrity and longevity. To investigate this, we conducted accelerated UV degradation tests on a variety of composite materials to rapidly assess their susceptibility to UV-induced changes. High-density polyethylene (HDPE) served as the matrix material and was reinforced with natural fibers, specifically fique fibers (Furcraea bedinghausii), banana fibers, and goose feathers. Our findings indicate that UV radiation exposure results in a noticeable reduction in the tensile strength of these materials. For example, wood composites experienced a 48% decline in tensile strength over a 60-day period, a rate of deterioration notably higher than that of other tested composite materials. Conversely, HDPE composites fortified with banana fibers initially demonstrated tensile strengths exceeding 9 MPa and 10 MPa. Although these values gradually decreased over the observation period, the composites still displayed favorable stress-strain characteristics. This research underscores the substantial influence of UV radiation on the longevity and efficacy of beehive materials, which in turn affects the durability of natural wood hives exposed to these environmental factors. The resultant increased maintenance and replacement costs for beekeepers further emphasize the need for judicious material selection in beehive construction and point to the viability of the composite materials examined in this study.

3.
Polymers (Basel) ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235886

RESUMEN

The use of mixed microbial cultures (MMC) and organic wastes and wastewaters as feed sources is considered an appealing approach to reduce the current polyhydroxyalkanoates (PHAs) production costs. However, this method entails an additional hurdle to the PHAs downstream processing (recovery and purification). In the current work, the effect of a sodium hypochlorite (NaClO) pre-treatment coupled with dimethyl carbonate (DMC) or chloroform (CF) as extraction solvents on the PHAs recovery efficiency (RE) from MMC was evaluated. MMC were harvested from a sequencing batch reactor (SBR) fed with a synthetic prefermented olive mill wastewaster. Two different carbon-sources (acetic acid and acetic/propionic acids) were employed during the batch accumulation of polyhydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from MMC. Obtained PHAs were characterized by 1H and 13C nuclear magnetic resonance, gel-permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. The results showed that when a NaClO pre-treatment is not added, the use of DMC allows to obtain higher RE of both biopolymers (PHB and PHBV), in comparison with CF. In contrast, the use of CF as extraction solvent required a pre-treatment step to improve the PHB and PHBV recovery. In all cases, RE values were higher for PHBV than for PHB.

4.
Polymers (Basel) ; 13(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34833226

RESUMEN

Sugarcane bagasse (SCB) is an abundant by-product of sugar refining that can be utilized as a raw material for cellulose isolation for several industrial applications. Electrospinning has garnered attention in recent years because it allows the preparation of cellulosic materials with unique properties. In this study, cellulose was isolated from sugarcane bagasse and acetylated to fabricate fine acetate cellulose fibers through electrospinning. Subsequently, the electrospun fibers were deacetylated and cationized in order to produce functionalized materials with potential textile applications. The functional fibers were colored with an anionic dye (vinyl sulfone) with and without the presence of salt and were evaluated according to dye fixation, color attributes, morphological characteristics, and thermal stability. Cationic cellulose fibers that were dyed without added salt were found to be brighter and demonstrated better color fixation than those with added salt. In addition, morphological analysis performed using scanning electron microscopy demonstrated that cationized fibers dyed without added salt were better preserved at this stage. The cationic fiber also evidenced a high-temperature resistance, exhibiting a degradation temperature above 236 °C. The results suggest that cellulose fibers dyed in this manner can potentially be considered for use in textile applications due to their suitable dye fixation and tunable porosity (i.e., breathability).

5.
Orinoquia ; 21(supl.1): 56-63, jul.-dic. 2017. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1091540

RESUMEN

Resumen Se estudiaron nanofibras de TiO2/ZnO preparadas por calcinación de fibras precursoras de poli (vinil acetato), isopropóxido de titanio y nano polvo de zinc elaboradas por la técnica de electrohilado. La estructura y la morfología de las nanofibras de TiO2/ZnO y fibras precursoras se caracterizaron por Microscopia Electrónica de Barrido (SEM), Microscopia Electrónica de Barrido de Emisión de Campo equipado con Espectroscopia Dispersiva de Rayos X (FESEM-EDS), Espectroscopia de Infrarrojo con Transformada de Fourier (FTIR) y Difracción de Rayos X (XRD). El análisis XRD mostró la estructura cristalina de los óxidos de titanio (anatasa) y de zinc (wurzita hexagonal), después de calcinar las fibras precursoras a 500°C. Las microfotografías de SEM muestran que tanto las fibras precursoras como las nanofibras forman redes uniformes y buena morfología. Estas nanofibras de dióxido de titanio /óxido de zinc presentan buen área de superficie y diámetros de 200 nm apropiados que podrían ser de aplicación potencial en el campo de energía renovable, en particular, para la fabricación de celdas solares.


Abstract The TiO2 /ZnO nanofibers prepared by the calcination of polyvinyl acetate of precursor fibers, titanium isopropoxide and nano zinc powder produced by the electrospinning technique were studied. The structu-re and morphology of TiO2 /ZnO nanofibers and precursor fibers were characterized by Scanning Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy coupled to Energy Dispersive X-ray spectroscopy (FESEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR) and XRD (X Ray Diffraction). XRD analysis displayed crystalline structures of titanium oxides (anatase) and zinc (hexagonal wurzite), after calcining the precursor fibers at 500 °C. SEM microphotographs display that both precursor fibers and nanofibers form uniform networks and good morphology. These titanium dioxide / zinc oxide nanofibers get good surface area and appropriate 200 nm diameters which could potentially be applied in the renewable energy field, particularly for solar cells manufacturing.


Resumo Nanofibras de TiO2 /ZnO preparado por calcinação de fibras precursoras de poli (acetato de vinila), isopropóxido de titânio e pó nano de zinco produzidos por eletrofiação técnica estudada. A estrutura e morfologia das nanofibras de TiO2/ ZnO e fibras precursores foram caracterizados por microscopia eletrônica de varredura (SEM), Microscopia eletrônica de varredura de emissão de campo equipada com espectroscopia de raios-X dispersiva (FESEM-EDS), Espectroscopia de Fourier Transform Infrared (FTIR) e difração de raios X (DRX). A análise de XRD mostrou a formação de estruturas de cristal de óxido de titânio (anatase) e zinco (wurtzita hexagonal), depois de fibras precursoras de calcinação a 500 °C. Micrografias mostram que tanto o precursor e fibras nanofibras uniformes formar redes e boa morfologia. Estas nanofibras de dióxido de titanio /óxido de zinco apresentam bom área de superfície e diâmetros de 200 nm apropriados que poderiam ser de aplicativo potencial no campo de energia renovável, em particular, para a fabricação de celas solares.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...